Peptide-based antiinfectives against sepsis and other severe bacterial infections

Challenge
Sepsis represents one of the leading causes of death in intensive-care units worldwide, with mortality rates ranging from 20% for sepsis to over 60% for septic shock. Treatment of sepsis poses an enormous burden for the health care systems with annual costs of USD 17 bn p.a. in the US alone. Existing therapies aim at killing the bacteria or modulating the immune response. Yet, these strategies do not address the major underlying trigger for sepsis, i.e. release of pathogenicity factors (PFs; endotoxins = lipopolysaccharides [LPSs] and lipoproteins [LPs]) from bacteria. Thus, in spite of recently improved diagnostic and therapeutic options, there is a major medical need for new and efficacious drugs, which not only kill the bacteria, but also neutralize PFs.

Technology
Based on comprehensive biophysical studies, a novel class of polypeptide-based antiinfectives has been developed against sepsis and other severe infections. Lead compound Aspidasept possesses potent antibacterial and antiviral activities, and importantly is capable to efficiently bind and neutralize bacterial endotoxins, this way preventing the overshooting inflammation reactions induced by PFs.

Aspidasept’s binding leads to a structural conversion of PFs into an inactive form, preventing their interaction with the human immune system. A variety of in vitro and in vivo data are indicative of the high inflammation-decreasing activity. Protection in animal models has been demonstrated e.g. for endotoxemia and cecal ligation/punctures (CLP). Induced inflammation in lung sections could be completely inhibited, and delayed addition of Aspidasept decreases inflammation and increases survival.

Commercial Opportunity
Aspidasept and related polypeptides are offered for in-licensing and/or co-development for the treatment of sepsis and/or bacterial and viral infections.

Developmental Status
- Given their physicochemical properties, the novel antimicrobial polypeptides possess broad activity against bacteria and viruses. Various in vitro and in vivo studies revealed potent activity against MRSA and synergistic properties with other antibiotics.

- The novel polypeptides efficiently neutralize PFs in vivo, reducing mortality as good or better as the accepted gold standard polymyxin B.
Protection in animal models has been demonstrated e.g. for endotoxemia and cecal ligation/punctures (CLP). Induced inflammation in lung sections could be completely inhibited, and delayed addition of Aspidasept decreases inflammation and increases survival.

For lead compound Aspidasept, a 14-day repeated dose toxicity study in rats has been completed. The NOAEL was determined, revealing that the planned clinical dose will be 500-times lower.

Based on animal data, SALPs possess a sufficient stability when given as permanent infusion. They are degraded within 2h, this way preventing undesired accumulation, induction of resistance and immunological/allergic reactions.

A protocol for GMP production has been established.

Preclinical development of Aspidasept is well advanced. Further studies are under way, in preparation and planned.

Patent Situation
Based on WO 2009/124721 (priority claimed: 04/2008), patents have been granted in US, JP and EP.

Further Reading

