Antimicrobial, endotoxine-neutralizing peptides for wound healing and treatment of bacterial skin and soft-tissue infections

Challenge
Severe bacterial infections represent an ever-increasing threat worldwide, which is aggravated by the continued appearance of multi-resistant bacteria and the lack of efficacious antidotes. This applies not only for systemic, but also non-systemic infections like COPD and severe skin and soft-tissue infections (SSTI), which are not necessarily life-threatening, but still significantly impact a patient's quality of life. Non-systemic bacterial infections causing chronic inflammations do represent a particular challenge for public health systems, emphasizing the urgent need for new therapeutic treatment options.

Technology
Antimicrobial peptides represent a promising class of agents for the treatment of bacterial infections. Recent studies convincingly showed that Pep19-2.5 (also known as Aspidasept), a synthetic antimicrobial and LPS-neutralizing peptide (SALP), efficiently neutralizes pathogenicity factors of Gram-negative and Gram-positive bacteria and protects against sepsis. An international group of scientist led by the FZB now demonstrated the potential of Pep19-2.5 and the structurally related compound Pep19-4LF for their therapeutic use in wound healing and against SSTI.

Commercial Opportunity
Proprietary peptides and compositions are available for in-licensing and/or co-development.

Developmental Status
Pep19-2.5 and Pep19-4LF are the result of nearly 20 years of research. Both SALPs possess antimicrobial and anti-inflammatory activity and are capable of efficiently neutralizing bacterial endotoxins. Pep19-2.5 has been successfully tested (e.g. in various animal models) regarding its therapeutic use against sepsis. In this context, also the compound's general tolerability was proven.

The possible use of Pep19-2.5 and Pep19-4LF in wound healing and against SSTI has been comprehensively tested in vitro, ex vivo, as well as in the context of a healing attempt.

Both SALPs inhibit the bacterial endotoxin-induced maturation and migration of monocyte-derived dendritic cells (MoDCs), thereby preventing sustained and excessive inflammatory responses, which otherwise may contribute to chronic inflammation and delayed wound healing. In TLR2/6-activated keratinocytes, the peptides considerably reduced the release of IL-8, a key pro-inflammatory mediator. In a scratch assay, both peptides markedly promoted cell migration and accelerated artificial wound healing attempt: wound before and after daily treatment w/ Pep19-2.5

Licensing Contact
Dr Torsten Stachelhaus
Technology Manager
T: +49 40 1888 43 48
stachelhaus@ascenion.de
Ascenion GmbH
Herzogstraße 64
D-80803 München
T: +49 89 318814-0
F: +49 89 318814-20
info@ascenion.de
www.ascenion.de

Berlin
Braunschweig
Hamburg
Hanover
Munich
Neuherberg
closure at concentrations as low as 1 ng/ml (= equipotent to TGF-β).

Finally, two healing attempts have been conducted. The first study concerned a male patient, who - due to a cured tumor - had an extensive open wound in his back (see picture). Over 6 years, all therapeutic approaches (incl. operative reconstruction, different antibiotics and salve formulations) have failed. Regular application of Pep19-2.5 (1% in DAC base cream), however, led to a complete healing of the wound after just 6 months.

The second healing attempt has been conducted with a female patient, suffering from a wide-spread exacerbated atopic dermatitis (AD). A defined part of the affected region was treated with Pep19-2.5 (1% in DAC base cream), while the remaining part remained untreated. After only 48h the treated part was free of symptoms.

Patent Situation
The proprietary peptides are subject of patent application WO 2009/124721 (priority date: 09.04.2008), which has been granted in EP, US and JP.

Particular compositions and formulations of SALPs, as well as their use for treatment of e.g. non-systemic infections are covered by separate patent application WO 2017/140770 (priority date: 19.02.2016).

Further Reading

